23 Gauge Mediation: Part 1

23.1 Modules

The basic idea of gauge mediation is that there are three sectors in the the-
ory, a dynamical SUSY breaking sector, a messenger sector, and the MSSM.
SUSY breaking is communicated to the messenger sector so that the messen-
gers have a SUSY breaking spectrum. They also have SM gauge interactions,
which then communicate SUSY breaking to the ordinary superpartners. We
will take a model with Ny messengers ¢;, ¢; and a Goldstino multiplet X

(X) =M+ 6*F (23.1)
with a superpotential
W= X¢,0; . (23.2)

In order to preserve gauge unification, ¢; and ¢; should form complete GUT
multiplets. This shifts the coupling at the GUT scale by
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For the unification to remain perturbative we need
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The VEV of X gives each messenger fermions a mass M, and the scalars
squared masses M? + F. We will be interested in the case that F < M?2.
We can construct an effective theory by integrating out the messengers.

23.2 RG Calculation of Masses
The pure gauge part of the Lagrangian is given by:
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Taylor expanding in the F' component of X we find a gaugino mass
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Next consider the wavefunction renormalization for the matter fields of
the MSSM

L— / d0z(x, xHQ'Q (23.11)

where Z must be real. Taylor expanding we have
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Canonically normalizing we have:
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So we have a sfermion mass term:
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Rescaling the matter fields also introduces an A term in the effective poten-
tial from Taylor expanding the superpotential:
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which is suppressed by a Yukawa coupling. To calculate Z, we do a SUSY
calculation and replace M by vV XXT. At [ loops an RG analysis gives
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So the two-loop scalar masses are determined by a one-loop RG eq.
At one-loop we have
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So
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